互联网 qkzz.net
全刊杂志网:首页 > 女性 > 文章正文
刊社推荐

基于T-S模型的模糊系统辨识方法综述


□ 蒋 强 肖 建 何都益 蒋 伟 王梦玲

  摘 要:模糊模型设计方法归结为两种,即语义驱动和数据驱动。数据驱动模型具有更好的性能,是目前研究的热点。模糊系统辨识是数据驱动下模糊系统建模的重要手段,辨识的优良直接影响系统建模的精度。模糊系统辨识可以分为两部分进行认识,即模糊系统结构辨识和参数辨识。回顾了近年来模糊系统辨识的理论和方法,如subtractive聚类、多分辨率自适应空间分解、SVM、核函数法、粒子群算法和并行遗传算法等。对各种算法原理、特点进行了介绍,对模糊系统辨识的发展进行了展望。
  关键词:模糊系统;系统辨识;结构辨识;参数辨识;T-S模型
  中图分类号:TP18文献标志码:A
  文章编号:1001-3695(2009)06-2008-05
  doi:10.3969/j.issn.1001-3695.2009.06.003
  
  Overview of methods of fuzzy system identification on T-S model
  JIANG Qiang1,2,XIAO Jian1,HE Du-yi2,JIANG Wei1,WANG Meng-ling1
  (1.School of Electrical Engineering, Southwest Jiaotong University, Chengdu 610031, China;2.Leshan Teachers College, Leshan Sichuan 614000, China)
  Abstract:There are different methodologies of fuzzy model design, which can mainly be divided into two groups: the semantic-driven modeling and data-driven modeling. Data-driven modeling became more popular for better property than semantic-driven. Fuzzy system identification is one of the main approaches of fuzzy system modeling. The accuracy of fuzzy system model relate to the result of fuzzy system identification. Fuzzy system identification includes structure identification and parameters identification.This paper reviewed the state of theorem and methods of fuzzy system identification briefly.Disscussed widely used methods of fuzzy system identification,including those based on subtractive clustering, multi-resolution analysis, support vector machine, kernel function, particle swarm and parallel genetic algorithm etc.Analyzed the characteristics of the methods,and outlined future research directions of fuzzy system identification. ......
很抱歉,暂无全文,若需要阅读全文或喜欢本刊物请联系《计算机应用研究》杂志社购买。
欢迎作者提供全文,请点击编辑
分享:
 

了解更多资讯,请关注“木兰百花园”
分享:
 
精彩图文


关键字
支持中国杂志产业发展,请购买、订阅纸质杂志,欢迎杂志社提供过刊、样刊及电子版。
关于我们 | 网站声明 | 刊社管理 | 网站地图 | 联系方式 | 中图分类法 | RSS 2.0订阅 | IP查询
全刊杂志赏析网 2017