互联网 qkzz.net
全刊杂志网:首页 > 文学评论 > 文章正文
刊社推荐

佩雷尔曼与庞加莱猜想


□ 汤 双

  二○○○年,美国克雷数学研究所(Clay Mathematics Institute, CMI)邀集了世界上的一些顶级数学家,共同拟定出七个对二十一世纪的数学发展具有重大意义的难题(千禧年大奖难题),并为每个难题的解决设定了一百万美元的奖金。庞加莱猜想是这七个难题之一,也是迄今为止其中唯一得到解答的问题。
  庞加莱猜想在拓扑学中占有举足轻重的地位。什么是拓扑学?简单地说,拓扑学就是研究有形的物体在连续变换下,怎样还能保持性质不变的学问。比如,把面团揉成一个圆球(其表面叫做球面),或压扁成一个烧饼,或拉成一根面条,它们的几何形状是完全不一样的,可它们的拓扑性质却相同(拓扑等价)。但如果在烧饼上挖个洞,变成一个甜甜圈(其表面叫做环面),则拓扑性质就变了。为了研究高维空间中曲面之间拓扑性质的异同,庞加莱(Henri Poincaré,1854—1912,法国数学家)在一九○四年提出了他著名的猜想,这个猜想最初是关于四维空间中的三维曲面的(我们生活在三维空间,皮球或甜甜圈的表面则是二维曲面),后来被推广到更高维空间中的曲面。非专业人士很难明白庞加莱猜想到底说的是什么,不过我们可以在三维空间中做一个粗略的类比,这样也能大概了解一点它的意思:如果在球面(或任何与球面拓扑等价的曲面)上任意画一个封闭的圈,然后让这个圈不断缩小,它最终一定会缩成一个点。直观上很容易看出,不管是圆球还是烧饼,在其表面上画一个封闭的圈,令其不断缩小,它显然会缩到一个点。但如果围着甜甜圈的洞画一个封闭的圈,由于洞的存在,这个圈是缩不到一个点的。因而我们说球面和环面具有不同的拓扑性质。
  庞加莱猜想在直观上看起来似乎一目了然,但在数学上要证明它却难上加难。法国数学大师阿兰·科纳(Alain Connes)在提到包括庞加莱猜想在内的七大千禧年难题时说:“正是这些极为困难的难题让数学更具价值,它们就像是数学领域里的珠穆朗玛峰或喜马拉雅山,到达顶峰是极难的——为此我们甚至可能付出一生的代价。但是一旦登上顶峰,看到的景色则将奇妙无比。”
  从一九○四年庞加莱猜想提出后,在将近一百年的时间里,有很多顶尖的数学家在其上倾注了无数心血。直到二○○二年十一月至二○○三年七月,俄国数学家格里戈里·佩雷尔曼(Grigori Perelman)在互联网上连续发表了三篇论文预印本,才最终给出了完整的证明。二○○六年,数学界最终确认佩雷尔曼的证明解决了庞加莱猜想。同年,第二十五届国际数学家大会决定将菲尔兹奖(这个奖通常被认为是数学界的诺贝尔奖)授予佩雷尔曼,但佩雷尔曼拒绝接受该奖,也拒绝出席大会。单凭拒领菲尔兹奖这一点,就可以说佩雷尔曼是个大怪人。但他的怪还远远不止于此。自从他在互联网上发表了那三篇论文,很多世界顶尖大学(例如普林斯顿大学、麻省理工学院、斯坦福大学等等)为他提供对常人来说极具吸引力的职位,希望他能去工作,而他或者粗鲁地加以拒绝,或者根本不予理睬。二○○五年底,不知由于什么原因,他又突然辞掉了在俄国斯捷克洛夫(Steklov)数学研究所的工作。之后住在他母亲位于圣彼得堡的公寓里,两人以他母亲的退休金和他在美国做博士后时积攒下的一点钱为生,过着一种与世隔绝的生活。他不但从学术界消失,而且从社会上消失了。有人曾试图打电话给他,得到的回答竟是“佩雷尔曼已经死了”。至于那一百万美元的千禧年大奖,佩雷尔曼也曾宣称不会接受。
  说起决定颁发千禧年大奖给佩雷尔曼,还有个小小的插曲。本来获奖资格的规定中有一条:难题的解答必须发表在相关的学术刊物上。佩雷尔曼的三篇论文只在互联网上发表过,而从没刊载于任何数学期刊。更有甚者,他还拒绝审阅任何解释、补充他的想法的论文。不过经慎重研究后,评审委员会最终还是决定佩雷尔曼有资格获奖。千禧年大奖的颁奖大会定于二○一○年六月召开。据美联社三月二十九日的消息,佩雷尔曼对是否接受该奖似乎有所松动,他中学时期的数学老师谢尔盖·儒克辛(Sergei Rukshin)透露,佩雷尔曼目前尚未最后决定是否要去领奖。这一百万美元奖金能不能给出去,谜底最终将在六月揭晓。
  佩雷尔曼为什么能攻克庞加莱猜想这一难题,又为什么会在行为上如此异于常人?最近俄国女作家玛莎·格森(Masha Gessen)专门写了一本书《完美的严格》(Perfect Rigor)来探讨这些问题。格森在青少年时期有着与佩雷尔曼颇为相似的生活环境,她不仅和佩雷尔曼一样是犹太裔,并且都是从小在数学俱乐部(相当于我们的奥数训练中心)里受训的数学才子、才女。这无疑为她研究佩雷尔曼提供了比较有利的条件。她采访了许多与佩雷尔曼有过接触的人,试图以“农村包围城市”的办法对他进行全面的了解。在她的书里有不少很有意思的故事。
  一般来讲数学家的思维方式分成两大类:代数型与几何型。在面对数学问题时,代数型的人往往将问题转化成数字或方程式来进行思考,而几何型的人则把问题转化成图形来进行思考。有意思的是,通过采访佩雷尔曼的众多同学,格森发现他似乎是个异类。与佩雷尔曼同窗长达十年的戈诺瓦洛夫(Golovanov)是典型的代数型, 他很肯定地说佩雷尔曼是几何型的,理由是佩雷尔曼解一道几何题所用的时间仅够他看明白这道题说的是什么。而几何型的苏达科夫(Sudakov)却一口咬定佩雷尔曼是代数型的,因为在他们共同训练和比赛的六年多里,两人对同一数学问题的思考过程及解决方法几乎毫无共同之处。总之,佩雷尔曼的思维方式对很多人而言都是一个谜。面对一道道难题,他通常连纸笔都不用,整个运算全在脑子里进行,然后将答案准确无误地写出来,就像一台解题机器。
分享:
 

了解更多资讯,请关注“木兰百花园”
摘自:读书 2010年第07期  
更多关于“佩雷尔曼与庞加莱猜想”的相关文章
    分享:
     
    精彩图文
    关键字
    支持中国杂志产业发展,请购买、订阅纸质杂志,欢迎杂志社提供过刊、样刊及电子版。
    关于我们 | 网站声明 | 刊社管理 | 网站地图 | 联系方式 | 中图分类法 | RSS 2.0订阅 | EMS快递查询
    全刊杂志赏析网 2016