互联网 qkzz.net
全刊杂志网:首页 > 女性 > 文章正文
刊社推荐

图像分割常用算法优缺点探析


摘 要 图像分割是数字图像处理中的重要前期过程,是一项重要的图像分割技术,是图像处理中最基本的技术之一。本文着重介绍了图像分割的常用方法及每种方法中的常用算法,并比较了各自的优缺点,提出了一些改进建议,以期为人们在相关图像数据条件下,根据不同的应用范围选择分割算法时提供依据。
  关键词 图像分割 算法 综述
  
  一、引言
  
  图像分割决定了图像分析的最终成败。有效合理的图像分割能够为基于内容的图像检索、对象分析等抽象出十分有用的信息,从而使得更高层的图像理解成为可能。目前图像分割仍然是一个没有得到很好解决的问题,如何提高图像分割的质量得到国内外学者的广泛关注,仍是一个研究热点。
  多年来人们对图像分割提出了不同的解释和表达,通俗易懂的定义则表述为:图像分割指的是把一幅图像分割成不同的区域,这些区域在某些图像特征,如边缘、纹理、颜色、亮度等方面是一致的或相似的。
  
  二、几种常用的图像分割算法及其优缺点
  
  (一)大津阈值分割法。
  由 Otsu于1978年提出大津阈值分割法又称为最大类间方差法。它是一种自动的非参数非监督的门限选取法。该方法的基本思路是选取的t的最佳阈值应当是使得不同类间的分离性最好。它的计算方法是首先计算基于直方图而得到的各分割特征值的发生概率,并以阈值变量t将分割特征值分为两类,然后求出每一类的类内方差及类间方差,选取使得类间方差最大,类内方差最小的t作为最佳阈值。
  由于该方法计算简单,在一定条件下不受图像对比度与亮度变化的影响,被认为是阈值自动选取的最优方法。该方法的缺点在于,要求得最佳阈值,需要遍历灰度范围0—(L-1)内的所有像素并计算出方差,当计算量大时效率会很低。同时,在实际图像中,由于图像本身灰度分布以及噪声干扰等因素的影响,仅利用灰度直方图得到的阈值并不能使图像分割得到满意的结果,虽在一定程度上可以消除噪声的影响,但该方法计算量相当大,难以应用到实时系统。
  (二)基于边缘检测的分割算法。
  基于边缘检测方法的基本思想是先检测图像中边缘点,再按一定策略连接成轮廓,从而构成分割区域。其难点在于边缘检测时抗噪性和检测精度的矛盾,若提高检测精度,则噪声产生的伪边缘会导致不合理的轮廓,若提高抗噪性,则会产生轮廓漏检和位置偏差。
  经典的边缘检测方法是构造对像素灰度级阶跃变化敏感的微分算子,如roberts梯度算子、Sobel梯度算子等,其边缘检
  测速度快,但得到的往往是断续的、不完整的结构信息,这类方法对噪声较为敏感。边缘检测技术中较为成熟的方法是线性滤波器,其中尤其是以拉普拉斯LOG(Laplace of Gauss)算子最为有名。
  LOG算子较好地解决了频域最优化和空域最优化之间的矛盾,计算方法也比较简单方便,另外,该算子在过零点检测中具有各向同性特点,保证了边缘的封闭性,符合人眼对自然界中大多数物体的视觉效果。在实际应用中,用高斯函数对图像做平滑滤波存在以下问题:高斯函数在对图像平滑的同时却产生了边缘模糊效应,出现了缓变边缘。而且随着领域的增大,抑制噪声效果的同时,边缘模糊效应相应增加,使LOG算子的噪声平滑能力与边缘定位能力相矛盾。 ......
很抱歉,暂无全文,若需要阅读全文或喜欢本刊物请联系《科教新报·教育科研》杂志社购买。
欢迎作者提供全文,请点击编辑
分享:
 

了解更多资讯,请关注“木兰百花园”
分享:
 
精彩图文


关键字
支持中国杂志产业发展,请购买、订阅纸质杂志,欢迎杂志社提供过刊、样刊及电子版。
关于我们 | 网站声明 | 刊社管理 | 网站地图 | 联系方式 | 中图分类法 | RSS 2.0订阅 | IP查询
全刊杂志赏析网 2017