互联网 qkzz.net
全刊杂志网:首页 > 女性 > 文章正文
刊社推荐

一种新的基于SVM权重向量的云分类器


□ 朱 杰 秦亮曦 龙炜哲 苏永秀

  摘 要:提出了一种用支持向量机(SVM)权重向量解决高维对象分类的方法,并结合云理论建立了基于SVM权重向量的云分类器。采用云模型建立训练集的各属性模型,分类模型由属性模型集成得到,属性权重根据SVM权重向量得到,属性权重越大,其对分类的贡献越大;反之,越小。将新分类器与云模型分类器对积雨云、卷云和卷层云进行分类模拟实验,新分类器的分类准确度比后者总体提升了, 经过交叉验证, 结果表明新分类器性能稳定。
  关键词:支持向量机;云模型;云分类器;交叉验证
  中图分类号:TP181文献标志码:A
  文章编号:1001-3695(2009)06-2098-03
  doi:10.3969/j.issn.1001-3695.2009.06.029
  
  New cloud classifier based on SVM weight vector
  ZHU Jie1,QIN Liang-xi1,LONG Wei-zhe1,SU Yong-xiu2
  (1.School of Computer, Electronics & Information, Guangxi University, Nanning 530004, China;2.Guangxi Institute of Meteorological Disaster Mitigation, Nanning 530022, China)
  Abstract:This paper presented a method of support vector machine weight vector to solve the problem of high-dimensional objects classification, and built cloud classifier based on the cloud theory and the SVM weight vector.Set up the attribute model of training by cloud model.Integrated classification model by every attribute model, and attributed weight came from the SVM weight vector. The larger the weight of an attribute was, the more it would make the contribution to classification. On the contrary, it would reduce the effect of classification. The new classification algorithm and the cloud classifier were applied to classify the radiance profiles as cumulonimbus, cirrus clouds, or cirrostratus clouds. The experimental results show that it must can improve the classification accuracy of spatial data in the overall performance than the latter.This cross validation to prove that the performance of the new classifier is pretty steady. ......
很抱歉,暂无全文,若需要阅读全文或喜欢本刊物请联系《计算机应用研究》杂志社购买。
欢迎作者提供全文,请点击编辑
分享:
 

了解更多资讯,请关注“木兰百花园”
分享:
 
精彩图文


关键字
支持中国杂志产业发展,请购买、订阅纸质杂志,欢迎杂志社提供过刊、样刊及电子版。
关于我们 | 网站声明 | 刊社管理 | 网站地图 | 联系方式 | 中图分类法 | RSS 2.0订阅 | IP查询
全刊杂志赏析网 2017