互联网 qkzz.net
全刊杂志网:首页 > 女性 > 文章正文
刊社推荐

一种基于ICA空间高斯混合模型的新颖检测


□ 裴志军 陶建华

  (天津大学 机械工程学院, 天津 300072)
  
  摘 要:新颖检测中,可应用高斯混合模型建立已知数据模型,拟合数据分布,但当数据维数较高时,自由参数太多,训练需要巨大的数据采样,而ICA搜寻数据的最大统计独立表示,可以将数据从高维空间投影到低维空间。提出一种基于ICA空间高斯混合模型的新颖检测,可有效减少估测的自由参数,降低训练数据采样的苛刻要求,实验也验证了该方法的可行性。
  关键词:新颖检测; 独立成分分析;高斯混合模型
  中图分类号:TN919 文献标志码:A
   文章编号:10013695(2009)03114204
  
  Novelty detection based on Gaussian mixture models in ICA space
  
  PEI Zhijun, TAO Jianhua
  
  (School of Mechanical Engineering, Tianjin University,Tianjin 300072, China)
  
  Abstract: A novelty detector learns the model of normality in the training stage using only normal samples and abnormalities are then identified by testing for novelty against that model. Gaussian mixture models can be used to model data general distributions for novelty detection. But given high data dimensionality, a very large number of training samples are needed for modeling, there are also too many free parameters. ICA is a subspace projection technique that can project data from a highdimensional space to a lowerdimensional space by computing independent components of the data. So this paper proposed a novelty detection based on Gaussian mixture models in ICA space, which could improve the dimension curse problem and decrease the free parameters. The method is verified by the experiments. ......
很抱歉,暂无全文,若需要阅读全文或喜欢本刊物请联系《计算机应用研究》杂志社购买。
欢迎作者提供全文,请点击编辑
分享:
 

了解更多资讯,请关注“木兰百花园”
分享:
 
精彩图文


关键字
支持中国杂志产业发展,请购买、订阅纸质杂志,欢迎杂志社提供过刊、样刊及电子版。
关于我们 | 网站声明 | 刊社管理 | 网站地图 | 联系方式 | 中图分类法 | RSS 2.0订阅 | IP查询
全刊杂志赏析网 2017