互联网 qkzz.net
全刊杂志网:首页 > 女性 > 文章正文
刊社推荐

基于最小二乘模糊支持向量机的基因分类研究骆嘉伟 苏涵沐 陈 涛


摘 要:随着大量基因表达数据的涌现,把海量的数据划分成数量相对较少的组,有助于提取对生理学和医药学等有价值的生物信息。基因分类技术能够很好地处理和分析这些基因数据。提出了一种应用于基因分类的模糊最小二乘支持向量机方法,通过设置模糊隶属度改变分类中样本的贡献属性。该方法不仅考虑了样本与类中心点的距离关系,还充分考虑样本与样本之间的关系,减弱噪声或野值样本对分类的影响。采用美国威斯康星乳腺癌数据和皮马印第安人糖尿病数据进行实验检测,均取得了很好的效果。
  关键词:基因微阵列; 基因分类; 最小二乘; 隶属度函数; 模糊支持向量机
  中图分类号:TP18
  文献标志码:A
  
  文章编号:1001-3695(2010)02-0459-03
  doi:10.3969/j.issn.1001-3695.2010.02.014
  
  Classification of genes based on least squares fuzzy support vector machines
  
  LUO Jia-wei, SU Han-mu, CHEN Tao
  
  (College of Computer & Communications, Hunan University, Changsha 410082, China)
  
  Abstract:With the emergence of a large amount of genetic data, divided the mass of data into a relatively small number of group can help to extract of physiology and medicine and other valuable biological information. Gene classification techniques can be very good at handling and analyzing the genetic data. This paper proposed fuzzy least squares support vector machine method which applied to gene classification. Defined the contribution of each sample by setting the fuzzy memberships.By considering the distance not only between the types of samples and the center of classification, but also between the samples and samples, noises and outliers were removed. The performance of the proposed method on the United States Wisconsin breast cancer database (WDBC) data and Pima Indians diabetes(PID) data are all achieved very good results. ......
很抱歉,暂无全文,若需要阅读全文或喜欢本刊物请联系《计算机应用研究》杂志社购买。
欢迎作者提供全文,请点击编辑
分享:
 

了解更多资讯,请关注“木兰百花园”
摘自:计算机应用研究 Tags:陈涛
分享:
 
精彩图文


关键字
支持中国杂志产业发展,请购买、订阅纸质杂志,欢迎杂志社提供过刊、样刊及电子版。
关于我们 | 网站声明 | 刊社管理 | 网站地图 | 联系方式 | 中图分类法 | RSS 2.0订阅 | IP查询
全刊杂志赏析网 2017