互联网 qkzz.net
全刊杂志网:首页 > 女性 > 文章正文
刊社推荐

求解函数优化的新型差异演化算法


□ 邓长寿 梁昌勇

  摘 要:针对差异演化算法存在早熟收敛和后期求解效率低的缺点,提出一种新型差异演化算法。该算法基于单种群,在演化过程中直接对当前种群进行变异、交叉和选择操作,无须差异演化算法中的中间过渡种群。此外,新型差异演化算法的变异与交叉概率是时变的,其中变异概率随着迭代次数的增加而减小;交叉概率随着迭代次数的增加而增加。对几个典型的测试函数进行仿真实验表明,该算法能够有效避免早熟收敛,改善了差异演化算法的优化性能。
  关键词:函数优化;差异演化;单种群;时变变异;时变交叉
  中图分类号:TP18文献标志码:A
  文章编号:1001-3695(2009)06-2047-03
  doi:10.3969/j.issn.1001-3695.2009.06.014
  
  Novel differential evolution algorithm for function optimization
  DENG Chang-shou1,2,LIANG Chang-yong1
  (1.Institute of Computer Network System, Hefei University of Technology, Hefei 230009, China;2.School of Information Science & Technology, Jiujiang University, Jiujiang Jiangxi 332005, China)
  Abstract:This paper proposed a novel differential evolution algorithm to overcome the premature convergence and slow convergent speed during the late evolution in differential evolution algorithm.The new algorithm was based on single population without intermediate population, in which mutation operation, crossover operation and selection operation were used on the current population. In addition, the parameters of mutation and crossover in the new DE were time-varying. The probability of mutation decreased with the evolution, while the probability of crossover was increasing. Results of several typical benchmark functions show the algorithm can avoid premature convergence and improve the performance of differential evolution algorithm in optimization. ......
很抱歉,暂无全文,若需要阅读全文或喜欢本刊物请联系《计算机应用研究》杂志社购买。
欢迎作者提供全文,请点击编辑
分享:
 

了解更多资讯,请关注“木兰百花园”
分享:
 
精彩图文


关键字
支持中国杂志产业发展,请购买、订阅纸质杂志,欢迎杂志社提供过刊、样刊及电子版。
关于我们 | 网站声明 | 刊社管理 | 网站地图 | 联系方式 | 中图分类法 | RSS 2.0订阅 | IP查询
全刊杂志赏析网 2017