互联网 qkzz.net
全刊杂志网:首页 > 女性 > 文章正文
刊社推荐

基于集成预测的稀有时间序列检测


□ 谭 琦 杨 沛

  .摘 要:为了解决误判问题,从预测的角度给出了离群点的定义,并提出了预测可信度和离群度的概念;同时,提出采用置换技术来降低离群点对预测模型的影响,并提出了基于集成预测的稀有时间序列检测算法。针对真实数据集的实验表明,可信度和离群度的定义是合理的,稀有时间序列检测算法是有效的。

  关键词:异常检测;离群点;时间序列;神经网络集成

  中图分类号:tp311 文献标志码:a

   文章编号:1001-3695(2008)09-2620-03

  outlier detection in time series through neural networks forecasting

  tan qi1,yang pei2

  (1.school of computer science & engineering, south china normal university, guangzhou 510631, china;2.school of computer science, south china university of technology, guangzhou 510640, china)

  abstract:from the view of forecasting, a novel definition of outlier in time series was presented, as well as the definition of the forecasting confidence and the degree of outlier. the technique of permutation was proposed to alleviate the impact of outliers upon the forecasting model. to solve the false alarm problem, the forecastingbased outlier detection algorithm was presented. the experiments conducted on the realworld datasets show that definition of the degree of outlier is reasonable and the outlier detection algorithm is effective.

  key words:outlier detection; outlier; time series; neural network ensemble

......
很抱歉,暂无全文,若需要阅读全文或喜欢本刊物请联系《计算机应用研究》杂志社购买。
欢迎作者提供全文,请点击编辑
分享:
 

了解更多资讯,请关注“木兰百花园”
分享:
 
精彩图文


关键字
支持中国杂志产业发展,请购买、订阅纸质杂志,欢迎杂志社提供过刊、样刊及电子版。
关于我们 | 网站声明 | 刊社管理 | 网站地图 | 联系方式 | 中图分类法 | RSS 2.0订阅 | IP查询
全刊杂志赏析网 2017