互联网 qkzz.net
全刊杂志网:首页 > 女性 > 文章正文
刊社推荐

基于遗传聚类算法的出行行为分析


□ 鲜于建川 隽志才

   (上海交通大学 安泰经济与管理学院, 上海 200052)
  
  摘 要:针对K中心点聚类算法对分类数据聚类的有效性和遗传算法良好的自组织、自适应和自学习能力,提出了基于遗传聚类算法的出行行为分析方法。该方法采用整数编码,用活动模式间的匹配度度量模式对象之间的相异度,以各活动模式与最近聚类中心点之间相异度的总和为适应度函数,探讨了K中心聚类与遗传算法相结合完成分类对象聚类分析的方法;通过算法在不同数据量和不同参数设定下仿真结果的比较,提出了关键参数的推荐值。研究表明,新方法不仅能很好地解决孤立点和局部最优的问题,同时还提高了算法的收敛速度,降低了计算成本,能很好地解决分类数据的聚类问题。
  关键词:聚类分析; 遗传算法; K中心点聚类; 活动模式
  中图分类号:TP183 文献标志码:A
   文章编号:10013695(2009)03083604
  
  Travel behavior analysis using genetic clustering algorithm
  
  XIANYU Jianchuan, JUAN Zhicai
  
  (College of Antai Economics & Management, Shanghai Jiaotong University, Shanghai 200052, China)
  
  Abstract:Based on the good performance of Kmedoids clustering algorithm for categorical data and the nice selforganization, selfadaptation and selflearning of genetic algorithm, this paper aimed to develop a methodology for the clustering of activity patterns with a genetic algorithm based clustering method. The proposed method used integer coded chromosome. The dissimilarity measure between two activity patterns was defined as the total number of mismatches of activity types at a corresponding time index and the fitness function was defined as the sum of dissimilarities of all objects to their nearest medoids. The results for different sizes of data sets and for different parameter settings were compared and based on this recommended parameter settings were provided. It is demonstrated that the algorithm is good at preventing premature convergence, decreasing the sensitivity to outliers and that it is fast converging and is a good solution for categorical data clustering analysis. ......
很抱歉,暂无全文,若需要阅读全文或喜欢本刊物请联系《计算机应用研究》杂志社购买。
欢迎作者提供全文,请点击编辑
分享:
 

了解更多资讯,请关注“木兰百花园”
分享:
 
精彩图文


关键字
支持中国杂志产业发展,请购买、订阅纸质杂志,欢迎杂志社提供过刊、样刊及电子版。
关于我们 | 网站声明 | 刊社管理 | 网站地图 | 联系方式 | 中图分类法 | RSS 2.0订阅 | IP查询
全刊杂志赏析网 2017