互联网 qkzz.net
全刊杂志网:首页 > 女性 > 文章正文
刊社推荐

基于粒子群算法的跳频信号参数估计


摘 要:针对基于时频分布的参数估计存在信噪比阈值和低信噪比下方差大的问题,提出了一种基于多峰优化粒子群算法的跳频信号参数估计新算法。该算法首先将跳频信号分解为时频原子的线性组合,然后由匹配原子获取跳频信号的参数估计。仿真结果表明,基于改进的物种形成粒子群算法能够搜索到与跳频信号分量相匹配的原子,与平滑伪魏格纳分布相比,提出的参数估计算法在低信噪比下具有较小的估计方差,更加适宜于电子战的实际应用。
  关键词:跳频信号; 参数估计; 粒子群; 多峰优化
  中图分类号:TN971.4
  文献标志码:A
  
  文章编号:1001-3695(2010)02-0512-03
  doi:10.3969/j.issn.1001-3695.2010.02.030
  
  Parameter estimation of frequency hopping signalbased on particle swarm optimization
  
  GUO Jian-tao1, WANG Hong-yuan2, YU Ben-hai1
  
  (1.College of Physics & Electronic Engineering, Xinyang Normal University, Xinyang Henan 464000, China; 2.Dept. of Electronics & Information Engineering, Huazhong University of Science & Technology, Wuhan 430074, China)
  
  Abstract:To aim at parameter estimation of signal to noise ratio (SNR) and high variance in low SNR based on time frequency distribution, this paper proposed a novel algorithm based on multimodal particle swarm optimization (PSO). First decomposed frequency hopping signal to linear combination of time frequency atoms, and then obtained its parameter by matched atomic parameter. Simulation showed that PSO using specification algorithm could find all the atoms that matched with frequency hopping components. Compared with smoothed pseudo Wigner-Ville distribution, the designed algorithm has lower variance and is more suitable for the actual application of electronic countermeasure. ......
很抱歉,暂无全文,若需要阅读全文或喜欢本刊物请联系《计算机应用研究》杂志社购买。
欢迎作者提供全文,请点击编辑
分享:
 

了解更多资讯,请关注“木兰百花园”
分享:
 
精彩图文


关键字
支持中国杂志产业发展,请购买、订阅纸质杂志,欢迎杂志社提供过刊、样刊及电子版。
关于我们 | 网站声明 | 刊社管理 | 网站地图 | 联系方式 | 中图分类法 | RSS 2.0订阅 | IP查询
全刊杂志赏析网 2017